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Topological Anderson insulating phases in the long-range Su-Schrieffer-Heeger model
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The long-range Su-Schrieffer-Heeger (SSH) model, in which the second nearest-neighbor hopping is taken
into account, exhibits a topological phase diagram that contains winding numbers w = 0, 1, and 2. In the
clean system, the change in winding number stems from the band-touching phenomenon. In the presence of
disorder, the renormalization of energy band and Fermi level results in the nonzero density of states in the
energy gap. These midgap states cause the crossover phenomenon and the divergence of localization length
at a critical disorder strength Uc in the finite SSH system. In this study, we numerically computed the mean
winding number and localization length for the disordered SSH system. We find that the disorder is able to drive
phase transitions between different mean winding numbers: w = 0 → 1, 0 → 2, 1 → 2, and 2 → 1 in the weak
disorder regime. By investigating the wave function distribution and the self-energy, the nonzero mean winding
numbers correspond to the so-called topological Anderson insulating (TAI) phases. The finite size scaling for
the mean winding number in the TAI phase is shown. For describing the phase transitions in the thermodynamic
limit, we apply the criterion of band gap closure resulting from the broadening of energy band and Fermi level
to determine the critical disorder strength. The critical disorder strength for self-consistent Born approximation
(SCBA) U SCBA

c and that for first Born approximation (FBA) U FBA
c are numerically calculated. U SCBA

c is found
to match with Uc qualitatively. Nonetheless, SCBA indicates the different roles of band shifts and Fermi level
broadening near the topological phase transitions. Band shift/Fermi level broadening is more dominant for the
transitions from low-to-high/high-to-low winding number. Interestingly, for the transition from bulk insulator to
TAI, U FBA

c is quantitatively closer to Uc than U SCBA
c as long as the renormalized band gap is zero within FBA.

DOI: 10.1103/PhysRevB.102.205425

I. INTRODUCTION

The phenomena of localization of electronic wave function
in random potential, now called Anderson localization, was
proposed by Anderson in his pioneering work in 1958 [1]. The
scaling theory of localization shows that, in low dimensions,
all states are localized no matter how weak the disorder is
[2,3]. As a result, in the thermodynamic limit, any low dimen-
sional system is an insulator. In Ref. [4], the Anderson local-
ization is directly observed in one-dimensional matter waves
of rubidium-87 Bose-Einstein condensates with controlled
disorder. On the other hand, when disorder is added to the sys-
tem with energy band topology, some interesting phenomena
arise. It is known that topological boundary modes are robust
to disorder. In topological insulators with high Fermi level that
both bulk and boundary modes transport, disorder plays a role
that suppresses the bulk bands and leaves the boundary modes
conduct [5]. Furthermore, in a normal insulator, disorder can
drive the transition to a topological insulator. This is called the
topological Anderson insulating (TAI) phase [6].

The TAI phase has been theoretically shown in several
studies [6–11]. Li et al. [6] showed that, in a two-dimensional
Bernevig–Hughes–Zhang (BHZ) model, disorder can lead to
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band inversion and topological phase transition from normal
to a nontrivial phase that carries quantized conductance. In
the same system, Groth et al. [7] applied Born approximation
to estimate the renormalization of gap parameter that leads
to inverted bands. They conclude that the normal insulating
and TAI phase boundary correspond to the crossing of a
band edge. Although the name seems to suggest Anderson
localization, the phase boundary actually exhibits a weak
disorder transition. Guo et al. [8] also found that disorder
transforms a normal insulator to a topological insulator in
three dimensions. Similar to the conclusion drawn by Groth
et al. [7], the weak-disorder boundary is the crossing of a
band edge. Nonetheless, they found the TAI phase extends to
a regime where energy broadening becomes significant and
localization is the leading factor. Xu et al. [9] showed there
are two kinds of TAI, the gapped and ungapped phases, in
the two-dimensional BHZ model. In the gapped TAI, only
edge states exist inside the energy gap. In the ungapped TAI,
the bulk and edge states coexist, while the bulk states are
localized by disorder. The latter is the counterpart of the
extended TAI in three dimensions shown by Guo et al. [8].

On the other hand, Gergs et al. [12] showed that in the
one-dimensional Kitaev model, the topology is stabilized
by repulsive interaction and/or moderate disorder. Altland
et al. [10,11] studied TAI phase transitions in multichan-
nel Su-Schrieffer-Heeger (SSH) chains and found transitions
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between different winding numbers. They utilized field theory
within self-consistent Born approximation and two-parameter
renormalization group flow to locate the phase boundaries
for bulk/topological insulator (BI/TI) to TAI phases. It was
shown in their studies that disorder induces crossover to
the Anderson insulator before the phase transition, which
was determined by delocalization and the half-integer wind-
ing number within SCBA. It is only until recently that the
TAI phase has been observed experimentally [13]. A one-
dimensional SSH model that preserves chiral symmetry was
simulated in ultracold atoms. It was shown that the winding
number (w) transitions from w = 0 to w = 1 as disorder
strength increases. The experimental feasibility of the SSH
model [13–15] makes it suitable for studying the interplay
between band topology and disorder.

Therefore, as motivated by these investigations, it is worth-
while studying the rich phase diagram, the TAI phases, and
the scattering mechanisms in the SSH model. In this study,
to explore the nontrivial phases with high winding number
in the presence of disorder, the long-range interaction, which
is experimentally applicable [14], is included in the SSH
model. TAI phases are shown in numerical simulations and
the mechanisms are explained with Born approximation in the
renormalized SSH system and theory of localization in the
finite SSH system. For the renormalized system, the energy
band is shifted and the Fermi level is broadened by the imag-
inary parts of the self-energy. This enables us to calculate the
critical disorder strength by the closure of the band gap. In
particular, we compare the phase boundary obtained from the
divergence of localization length with the band closure within
Born approximation. The crossover regions are observed in
our numerical results, which correspond to the nonzero imag-
inary part of the self-energy in the renormalized SSH system.
As proposed in several theoretical works, the BI-TAI transi-
tion, which corresponds to the w = 0 to w = 1 transition, is
found. Furthermore, we find that the transition can go directly
from w = 0 to w = 2 without crossing w = 1. The TI-TAI is
the transition between two nontrivial insulating phases with
different winding numbers. The transitions w = 1 → 2 → 1
and w = 2 → 1 driven by disorder are found.

This paper is organized as follows. In Sec. II, the model
Hamiltonian and the methods for characterizing the TAI
phases are presented. The BI-TAI and TI-TAI transitions are
discussed in Sec. III. We also present the thermodynamic limit
for the fluctuation of winding number and conductance. In
Sec. IV, the crossover regions and band closure are identified
by self-energy within the Born approximation. The critical
disorder strengths are calculated by using Born approximation
and the comparison with the finite SSH system is discussed.
Our conclusion is given in Sec. V.

II. LONG-RANGE SSH MODEL

The one-dimensional Su-Schrieffer-Heeger (SSH) Hamil-
tonian with long-range hopping that preserves chiral (sublat-
tice) symmetry [16–19] is given by

H0 =
N∑

i=0

J0C
†
i,aCi,b + J1C

†
i+1,aCi,b + J2C

†
i+2,aCi,b + H.c.,

(1)

where i is the lattice site, N is the length of the model, and
C†

ia,ib,Cia,ib are the creation and annihilation operators on sub-
lattices a, b on the ith unit cell. There are two types of nearest
neighbor coupling. J0 denotes the intracell coupling, while J1

denotes the intercell coupling. In the momentum space, the
SSH Hamiltonian is written as

H0(k) = hx(k)σx + hy(k)σy, (2)

where

hx(k) = J0 + J1 cos k + J2 cos(2k),

hy(k) = J1 sin k + J2 sin(2k). (3)

σx,y are Pauli matrices and act on the sublattices a, b. The
lattice constant is taken to be unity. The eigenenergy is E± =
±

√
h2

x + h2
y . Before directly calculating the topological phase,

the phase diagram can be inferred by adiabatic connection
[20,21].

The energy gap as a function of J2/J0 and J1/J0 is shown in
Fig. 1(a). The phase diagram is asymmetric about J2 = 0 due
to the presence of the positive intracell term. The gap closing
conditions are given by

1 +J1

J0
cos k0 + J2

J0
cos(2k0) = 0, (4)

J1

J0
sin k0 + J2

J0
sin(2k0) = 0. (5)

Equation (4) is satisfied when k0 = 0(π ) and J0 ± J1 + J2 =
0, giving rise to the straight phase boundary with slope ∓1
and the interception at J2/J0 = −1, as shown in Fig. 1(a).
Nonetheless, Eq. (5) is also satisfied by J1/J2 = −2 cos k0,
which is plugged into Eq. (4) to obtain another condition
J2/J0 = 1. As a result, these conditions give rise to the hor-
izontal boundary of J2/J0 = 1 for J1/J0 = [−2, 2], as shown
in Fig. 1(a).

The geometrical origin of the topology lies in the sub-
lattice pairing. In nontrivial topological phase, the bonding
is formed between opposite sublattices from different lattice
sites, i.e., sublattice a bonds with sublattice b at another site.
This is referred to as the singlet pairing [13]. Quantitatively,
this pairing is described by winding number denoted as w

[13,16]. For w = 1, the average singlet pairing forms between
the nearest neighbor, while, for w = 2, the average singlet
pairing forms between the next nearest neighbor. In contrast,
for trivial topology, the bonding is formed within the same
lattice site.

To study the effect of disorder on the topological phases,
the disordered intracell coupling is taken into account

HU =
N∑

i=1

UiC
†
i,aCi,b, (6)

where Ui are given by the random number in the range
[−U

2 , U
2 ], with U the disorder strengths in the unit of J0. For

characterizing the topological phases in a disordered system,
the winding numbers are computed numerically for the tight-
binding Hamiltonian.

Here, we use the method proposed by [13,16] that applies
for the chiral symmetric systems [13,18]. By defining Q =
P+ − P− and the chiral symmetry operators S = S+ − S−,
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FIG. 1. (a) Energy gap. (b) The winding number as a function
of J1, J2. In (a), the winding numbers, annotated by the numbers
on the plot, are inferred from adiabatic connection. The red dashed
line is in the vicinity of the phase boundary, where the TAI phases
are shown in Fig. 2. In (b), the length of chain is Nx = 400 for
winding numbers. Comparing the two figures, the vanishing energy
gap coincides with phase boundaries given by winding numbers.

where P± are the projection operators that project to the
positive or negative energy bands, S± are the projection to
sublattice a or b, the winding number is given by

w = −Trs{Q−+[X, Q+−]}, (7)

where Q+− = S+QS−, Q−+ = S−QS+ = (Q+−)−1, X is the
position operator, and Trs(· · · ) is the trace over the sublattices.
This equation computes the local topological marker in real
space [16,22]. We calculate the average over the central part as
the winding number for a chain [13]. For disordered systems,
the average over disorder configurations is performed as well.
The winding number as a function of J1/J0, J2/J0 for the
clean limit is shown in Fig. 1(b). The results coincide with
that from adiabatic connection. However, the finite size effect

FIG. 2. Topological phases as a function of disorder strength
and J1/J0 near the phase boundary, following the red dashed line
in Fig. 1(a). The black crosses denote the peaks of the localization
length. The red dashed line denotes U ∗, at which the self-energy
starts to acquire an imaginary part (discussed in Sec. IV).

in the tight-binding Hamiltonian could smooth out the phase
boundaries. Therefore, the localization length, the peaks of
which identify the topological phase transitions [16], must
also be calculated.

To compute the localization length, the iterative Green’s
function method is adopted [23]. The localization length can
be extracted from the Green’s function [24,25]

2

λ
= − lim

n→∞
1

n
Tr ln |G1n|2, (8)

where n is the total number of sites of the SSH model and
G1n is the propagator connecting the first and the last slice
of the system. A well-known challenge in this method is the
vanishing small eigenvalues due to successive matrix multi-
plication. To overcome the numerical instability, we apply the
method proposed in [24] that normalizes the Green’s function
regularly.

In the next section, we present the phase diagram driven by
the disorder defined in Eq. (6) along the trajectory of the vicin-
ity of the phase boundary [see Fig. 1(a)]. The mean winding
number is calculated and its fluctuation with the length of the
system is discussed.

III. TAI PHASES AND TRANSITIONS

We study the topological Anderson insulator (TAI) phase
driven by the disordered intracell coupling, as shown in
Eq. (6). The TAI phase transition is investigated near the
phase boundaries in the clean limit. Fixing J0 = 1 and J2 =
J1 − 0.94, the mean winding numbers are plotted as a function
of disorder strength and J1/J0, as shown in Fig. 2.

The winding number in the clean limit is retained up to a
critical disorder. As disorder strength increases, mean winding
numbers change to another integer. In Fig. 2, two types of
transitions are observed from this numerical result. The transi-
tion from bulk insulator (BI) to TAI is the transition from zero
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mean winding number to a nonzero mean winding number.
Such transition can be seen for 0 � J1/J0 < 2 in Fig. 2. The
transition from topological insulator (TI) to TAI is the transi-
tion between the two nontrivial topological phases. It occurs
for −1 � J1/J0 < 0 and 2 � J1/J0 � 3 at weak disorder and
−1 � J1/J0 < 0 at strong disorder limit in Fig. 2.

The transition would accompany the crossover phe-
nomenon which will be discussed in Sec. IV. Therefore, to
better locate the phase transitions, we compute the localiza-
tion length. The peaks of the localization length indicate the
boundary of topological phase transitions [16,26]. Our numer-
ical results show that the boundaries of the mean winding
number match the peaks of localization length as denoted
by the black crosses shown in Fig. 2. The critical disorder
strength on the boundaries is denoted by Uc. Some examples
of the localization length and the changes in mean winding
numbers are given in Fig. 3. Figure 3(a) is a BI-TAI transi-
tion for J1 = 0. Disorder drives the system directly to w = 2
because there is no singlet pairing between nearest neighbors
for this Hamiltonian. When J1 is nonzero, disorder drives the
formation of singlet pairing between the nearest neighbor and
the transition goes from w = 0 to w = 1. This result shows
that weak disorder scattering changes topological properties
of the system by strengthening the lowest-order nonzero in-
tercell coupling. Figures 3(b) and 3(c) are TI-TAI transitions.
Disorder drives the transition between different topological
phases and eventually to normal insulating phase at extremely
strong disorder. The change of the mean winding number is
1, meaning only one pair of edge states is removed or formed
at a time. The second and third peaks are smaller, indicating
that the delocalization at transition is rather weak in the strong
disorder regime.

The scaling functions of the fluctuation of the winding
number, denoted as �w, for TAI phase is studied. The ex-
ponential convergence of Eq. (7) is shown by the rigorous
mathematical proof in Ref. [27]. Figure 4(a) shows that �w

can be fit with e−cL/L with c = 0.0003 (orange solid line in
the figure). For the range of length considered, the exponential
decay is not obvious; thus the decay is close to the algebraic
(L−1) decay, as shown by the green dashed line in Fig. 4(a).
The scaling shows that �w vanishes smoothly and w reaches
exact quantization in the thermodynamic limit (L → ∞).
Moreover, to further examine the insulating phases, mean
conductance as a function of chain length was computed. The
details about the computation of conductance is described in
the Appendixes. Figure 4(b) shows that the conductance expo-
nentially decays with chain length, i.e., G ∝ e−L/λ, confirming
the insulating behavior in the TAI phases. The numerical
results agree with the two-parameter renormalization group
theory [10,11], which states that both the mean conductance
and the mean winding number converge exponentially in the
thermodynamic limit.

The disorder drives not only the phase transition but also
the crossover phenomenon. The latter can be seen by study-
ing the probability distributions of wave functions. Moreover,
in topological phases, the bulk-edge correspondence predicts
that the numbers of pairs of edge states are the same as
winding numbers [28,29]. We plot the disorder averaged prob-
ability density, projected to each sublattice, of the states near
the band center. Figures 5(a) and 5(b) show the probability

FIG. 3. Mean winding number and localization length as a
function of disorder strength for (J0, J1, J2). (a) (1, 0,−0.94);
(b) (1,−0.8, −1.74); (c) (1, 2.4, 1.46). For the mean winding num-
ber, the error bars are plotted every other data point for clarity. The
number of disorder configuration for the mean winding number and
localization length is 50 and 10, respectively. The system length
for winding number is 1000. The iteration steps for calculating the
localization length is 104 that ensures convergence.

density near the band center for TAI phases with w = 2 via
BI-TAI and TI-TAI transitions, respectively. The probability
densities were obtained from direct diagonalization for a chain
with length 1000 lattice sites. The 998th to 1001th states are
plotted in each row and the corresponding energy is shown
in the legend. The disorder strength increases from the left
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FIG. 4. (a) Scaling function of �w for (J0, J1, J2) =
(1, 0, −0.94) and U = 2.5. The inset shows the log-log plot.
The dotted dashed lines are the numerical values. Panel (b) shows
the scaling of the dimensionless conductance with chain length for
the same parameters. The straight line is the fitted linear relation
between ln(G) vs L.

to the right column. We find that the center column is in
the crossover regions for U ∗ < U < Uc and the rightmost
column is in the TAI phase for U > Uc. The quantity U ∗ is the
disorder strength in which the imaginary part of self-energy
starts to be nonzero in the renormalized SSH system. U ∗ is
labeled by the dashed line (red) in Fig. 2. In the crossover
regions, the system transits from bulk insulator (U = 0) to AI
(U ∗ < U < Uc) and then becomes TAI (U > Uc). Figure 5(a)
shows the probability density along the w = 0 → 2 transition.
The leftmost column (U = 0) shows the probability density
in the clean limit, where the states near the band center are
bulk states and are away from zero energy. The rightmost
column is the probability density at U = 3 > Uc, which is in
the TAI phase with w = 2. There are two pairs of edge states
at E = 0—the same as the winding number.

On the other hand, Fig. 5(b) gives the probability density
along the w = 1 → 2 transition (TI-TAI transition). There is
one pair of edge states at E = 0 in the clean limit, as shown in
the leftmost column (U = 0). In the crossover region (U ∗ <

U < Uc), the bulk states become Anderson localized states.

Interestingly, the edge state is not significantly affected by the
disorder. The rightmost column is the probability density at
U = 3 > Uc, which is in the TAI phase with w = 2. There are
two pairs of edge states at E = 0, as expected by the bulk-edge
correspondence. The bulk-edge correspondence for TAI phase
with w = 1 is also satisfied. The probability density along
the w = 0 → 1 and w = 2 → 1 transitions are presented in
Fig. 6. In Fig. 6(b), the winding number decreases from the
clean limit to TAI phase. In the crossover region, as shown
in the center column, the probability density gains few bulk
contributions, indicating the robustness of edge states. In the
TAI phase with w = 1, as shown in the rightmost column,
only one pair of edge state is left at zero energy, while the
other pair is scattered into bulk with a higher energy level.

In short, to demonstrate the crossover, the probability
density in different regimes is plotted in Figs. 5 and 6. In
Figs. 5(a), 5(b) and Fig. 6(a), the winding number increases
from the clean limit to TAI phase. The probability density in
crossover regions is shown in the center column. The energy
levels are drawn nearer to E f = 0 than that in the clean limit.
The spikes in the probability density demonstrate the wave
function localization in the bulk.

In the finite SSH system, it is shown that the phase transi-
tion accompanies the crossover phenomenon. Nevertheless, in
the thermodynamic limit, the crossover phenomenon should
appear when the imaginary part of self-energy starts to be
nonzero in the renormalized SSH system. This is because the
nonzero value of the imaginary part of self-energy would re-
sult in the broadening of Fermi level (as well as energy band)
and depicts more localized states near the zero energy. In this
sense, when the energy band shift and the broadening of Fermi
level together close the band gap, the corresponding disorder
strength for the closure of the band gap would be the critical
disorder strength. In Sec. IV, we calculate the self-energy and
the critical disorder strength by using Born approximation and
compare the results with the finite SSH system.

IV. SELF-ENERGY AND BAND CLOSURE

As shown in Sec. III, before the phase transitions, there
are crossover regions, where Anderson localization starts to
come into play [10,11]. This is the crossover regime when
the BI (TI) enters the AI (TAI) phases before phase tran-
sition. Within crossover, the topological edge states do not
significantly change while the density of states penetrate into
the energy gap. The energy shift and Fermi level broaden-
ing by disorder could close the band gap. In this sense, the
crossover phenomenon in the finite SSH system corresponds
to the nonzero imaginary part of self-energy. Furthermore, the
closure of the band gap can be used to determine the critical
disorder strength. We consider two approximations: first Born
approximation (FBA) and self-consistent Born approximation
(SCBA). The self-energy � is given by the self-consistent
equation

� = U 2

12

∑
k∈BZ

1

z − H0(k) − �
, (9)

where z = E f + iη. By regarding the self-energy as � =
�xσx + �0σ0 (which is consistent with the numerical result),
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FIG. 5. Numerical results showing the probability density for states near the band center in the clean limit (leftmost column), crossover
(center column), and TAI phases (rightmost column) for (J0, J1, J2). (a) (1, 0, −0.96) with U ∗ = 0.7 and Uc = 1.1 and (b) (1,−0.8, −1.74)
with U ∗ = 1.2 and Uc = 1.4. The number of disorder configuration is 20. The length of the chain is 1000.
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FIG. 6. Numerical results showing the probability density for states near the band center in the clean limit (leftmost column), crossover
(center column), and TAI phases (rightmost column) for (J0, J1, J2). (a) (1, 1, 0.06) with U ∗ = 0.7 and Uc = 1.2 and (b) (1, 2.4, 1.46) with
U ∗ = 0.8 and Uc = 1.2. The number of disorder configuration is 20. The length of the chain is 1000.
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it can be shown that Eq. (9) can be written as the renor-
malized J̄0 and Ē f through the definitions J̄0 = J0 + �x and
Ē f = E f − �0. We have

J̄0 = J0 − U 2

12

∑
k∈BZ

J̄0 + ck(
J̄0 + c2

k

)2 + s2
k − (Ē f + iη)2

(10)

and

Ē f = E f + U 2

12

∑
k∈BZ

Ē f + iη(
J̄0 + c2

k

)2 + s2
k − (Ē f + iη)2

, (11)

where ck = J1 cos(k) + J2 cos(2k) and sk = J1 sin(k) +
J2 sin(2k), where the lattice constant is taken to be 1.
The summation can be replaced by the integral, i.e.,∑

k∈BZ = (1/2π )
∫ π

−π
dk. The self-energy can be solved

analytically as given in the Appendixes.
In FBA, δJ0 = J̄0 − J0 and δE f = Ē f − E f are evaluated

independently. At half-filling, i.e., E f = 0, δE f is zero at
weak disorder. The vanishing δE f implies that no crossover
regions can be identified. The energy dispersion becomes
E = ±

√
(hx + δJ0)2 + h2

y . The condition for the gap closure
is then given by

J0 + δJ0 + J1 cos k0 + J2 cos(2k0) = 0,

J1 sin k0 + J2 sin(2k0) = 0. (12)

For k0 = π , one obtains the critical disorder strength in FBA
denoted as U FBA

c by equating

Emin =
(
U FBA

c

)2

24J0
, (13)

where Emin is the lowest energy of the conduction band in
the clean limit. For 1.8 � J1/J0 � 2.2, the band minima shift
away from π ; to estimate U FBA

c for comparison with Uc,
Eq. (13) is applied even though Eq. (12) is not satisfied.
The critical disorder strength U FBA

c found by this criterion is
drawn on Fig. 7(a) with stars (	) and open circles (◦). We
find that U FBA

c exhibits approximately a straight line phase
boundary (U FBA

c ≈ 1.2). For stronger Uc > 1.2, U FBA
c cannot

qualitatively fit the results of Uc. Emin varies only in the regime
1.8 � J1/J0 � 2.2 and is a constant beyond this regime; U FBA

c
follows the same trend as the bare values of Emin according to
Eq. (13). The overall band closure boundary within FBA is
qualitatively different from the phase transition boundary.

In contrast to FBA, SCBA gives rise to the pure imaginary
part δE f , which also affects δJ0 in the self-consistent calcula-
tion. The numerical results show that the self-energy has two
components � = δJ0σx + δE f σ0. Within SCBA, δE f acquires
a nonzero imaginary part, indicating the appearance of midgap
states. The corresponding disorder strength (U ∗) is labeled by
the dashed line (red) in the phase diagram (see Fig. 2). At band
closure, the energy gap is filled with electronic states when the
band gap is renormalized by δJ0 and smeared out by the Fermi
level broadening in the presence of disorder. Thus the critical
disorder strength U SCBA

c is determined by√
[hx(k0) + δJ0]2 + hy(k0)2 − |δE f | = 0 (14)

and drawn on Fig. 7(a) with dots (•). We find that U SCBA
c gives

a qualitative description of the phase transition boundary (Uc).

FIG. 7. (a) Numerical results showing the boundaries for band
closure determined by SCBA (red •) and FBA (blue 	). The crit-
ical disorder strength Uc is shown by the cross (black ×). The
region −1 � J1/J0 < 0 is the transition w = 1 → 2. J1/J0 = 0 is
the transition w = 0 → 2. The region 0 < J1/J0 < 2 is the transition
w = 0 → 1. The region 2 � J1/J0 � 3 is the transition w = 2 → 1.
The empty circles along the FBA boundary are given by Eq. (13)
without satisfying Eq. (12). (b) The imaginary part of the self-energy
given by SCBA at band closure. ImEf is always negative. (c) δJ0

given by SCBA at band closure.

In the renormalized SSH system, the change in the winding
number would be from the band shift and the localized state in
the gap. The former is determined by the value of δJ0 and the
latter by the value ImE f , which are shown in Figs. 7(b) and
7(c). From the numerical SCBA calculation, we find that δJ0

changes sign. When δJ0 is negative, the energy band minimum
is pulled down, and the bulk states at zero energy become
significant. Our numerical results show that U FBA

c fits the trend
with Uc in this regime. On the other hand, positive δJ0 leads
to the rise of the energy band minimum. In this case, our
numerical results show that U SCBA

c fits the trend with Uc better
than U FBA

c . For the case of vanishing δJ0, the change in zero
mode of edge states is due to the broadening of Fermi level
and, thus, U SCBA

c agrees with Uc. Furthermore, the agreement
between these values of Uc, U SCBA

c , and U FBA
c depends on the

topological properties in the clean limit. For systems in the
topological states in the clean limit, U SCBA

c agrees with Uc

phase boundary. We discuss these numerical results in detail
in the following.

In the region 0 � J1/J0 < 1.8, which is the BI-TAI transi-
tion (0 → 1 and 0 → 2), FBA gives a quantitative agreement
to the phase boundary, as shown in Fig. 7(a). In this region,
δJ0 is negative and large, and |ImE f | is small, indicating
that the major contribution is from the band edge. At point
J1/J0 = 1.8, the transition is also from w = 0 to w = 1, i.e.,
BI-TAI transition, but U SCBA

c agrees with Uc better than U FBA
c

for this particular point. Since the renormalized band gap is
not exactly zero within FBA, followed by the discussion along
with Eqs. (12) and (13), U FBA

c does not agree with Uc.
In the region −1 � J1/J0 < 0, which is the phase transition

w = 1 → 2, SCBA gives negative δJ0, suggesting that the
extra zero mode edge states would be from bulk states. We
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observe that U SCBA
c is indeed quantitatively closer to Uc than

U FBA
c , especially in the region with stronger Uc. Only in the

region with weaker Uc do we find that U FBA
c ≈ U SCBA

c ≈ Uc.
In contrast to the BI-TAI transition, there exists zero mode
edge states in the clean limit; U SCBA

c dominates the phase
boundary, as a consequence of the zero mode edge state being
topologically protected up to all order of scattering diagram.

On the other hand, for the transition from high to low
winding numbers (2 → 1), i.e., the regime J1/J0 � 2, U SCBA

c
fits the trend of the Uc phase boundary better than U FBA

c , as
shown in Fig. 7(a). Figures 7(b) and 7(c) show that the Fermi
level broadening becomes significant. This is in agreement
with the probability density in finite system shown in the right-
most column in Fig. 6(b). For reducing the winding number,
one pair of the zero mode edge states is scattered into bulk.
In contrast, FBA still gives zero Fermi level broadening and
negative band shift δJ0, i.e., the bulk state dominates the phase
transition. As mentioned above, U FBA

c exhibits a straight line
boundary U FBA

c ≈ 1.2. When J1/J0 = 2.4, U FBA
c approaches

the straight line boundary and numerically at this point we
obtain U FBA

c ≈ U SCBA
c .

As pointed out by Guo et al. [8] in their study of the
three-dimensional TAI, the TAI regime where the self-energy
obtains an imaginary part is the “true” TAI phase. In three-
dimensional TAI, because bulk states do not contribute to
conductance, bulk states must be localized. In one dimension,
we find that band closure within SCBA gives a qualitative
agreement with the phase transition boundary. It suggests that
the interplay between the band edge renormalization and life-
time broadening is essential for the phase transition. Similar to
the three-dimensional TAI, we find that, in all TAI phases, the
self-energy has a nonzero imaginary part, confirming the TAI
phases. Nonetheless, we show that, for high-to-low transition,
the TAI phase has significantly larger lifetime broadening.

V. CONCLUSION

We have shown that the higher winding numbers ex-
hibit in the Su-Schrieffer-Heeger (SSH) system when the
second nearest-neighbor hopping is included in the SSH

Hamiltonian. We study the transition between bulk insulator
(BI), topological insulator (TI), and topological Anderson in-
sulator (TAI). In the presence of disorder, topological phase
transitions driven by disorder are identified by the divergence
of localization length. The disorder-induced phases are further
investigated by the mean winding numbers and wave func-
tions. The scaling of the mean winding number is reported.
We calculated the critical disorder strength by using first Born
approximation (FBA) and self-consistent Born approximation
(SCBA). The critical disorder strength for transitions are cal-
culated by the criterion of the closure of energy gap resulting
from the broadening of energy band and Fermi level. Com-
pared to the phase boundary given by delocalization (Uc), we
showed that the FBA exhibits phase boundary closer to Uc

than the SCBA for BI-TAI transition if the renormalized band
gap is zero within FBA. For TI-TAI transition, we also showed
the phase boundary obtained from SCBA qualitatively fits Uc.
Moreover, SCBA shows that, for the transition from low-to-
high winding number, the band shift is more dominant, while
for high-to-low winding number, the Fermi level broadening
is more significant.
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APPENDIX A: ANALYTICAL CALCULATION OF BORN
APPROXIMATION

Equations (10) and (11) can be evaluated analytically. The
result of Eq. (10) is given by (let η → 0)

J̄0 = J0 − U 2

12

1

2J̄0

{
1 + (−i)

√
2

2

[
1


1
− 1


2

]}
, (A1)

where

1


1
= J2

[
2J̄3

0 + J̄0
(
2Ē f − J2

1 − 2J2
2

) + J1
(
J1J2 + √

μ1
)]

√
μ1

√
M1

,

1


2
= J2

[ − 2J̄3
0 + J̄0

(−2Ē f + J2
1 + 2J2

2

) + J1
( − J1J2 + √

μ1
)]

√
μ1

√
M2

, (A2)

and

μ1 = −4J̄3
0 J2 + J2

1 J2
2 − 2J̄0J2

(−2Ē f + J2
1 + 2J2

2

) + J̄2
0

(
J2

1 + 8J2
2

)
,

M1 = 2J̄3
0 J2 − J̄2

0

(
J2

1 − 4J2
2

) − J1J2(J1J2 + √
μ1) − J̄0

(
2Ē f J2 − 2J3

2 + J1
√

μ1
)
,

M2 = 2J̄3
0 J2 − J̄2

0

(
J2

1 − 4J2
2

) + J1J2(−J1J2 + √
μ1) + J̄0

(−2Ē f J2 + 2J3
2 + J1

√
μ1

)
. (A3)

In the Born approximation (not self-consistent), J̄0 and Ē f are
replaced by the bare values J0 and E f at the right hand side of
the equality of Eq. (A1). In this case, the second term in {· · · }

of Eq. (A1) is pure imaginary and we have

δJ0 ≡ −|E | = Re[J̄0] − J0 = − U 2

24J0
. (A4)

205425-9



HSIU-CHUAN HSU AND TSUNG-WEI CHEN PHYSICAL REVIEW B 102, 205425 (2020)

On the other hand, Eq. (11) can also be evaluated analytically,
and the result is

Ē f = E f + (−i)
U 2

12
Ē f

√
2

(
1


3
+ 1


4

)
, (A5)

where

1


3
= J̄0J2√

μ1
√

M1
,

1


4
= J̄0J2√

μ1
√

M2
. (A6)

In the Born approximation, Ē f is replaced by E f at the right
hand side of Eq. (A5). Furthermore, in this approximation,
when E f = 0, we have Ē f = 0.

APPENDIX B: CALCULATION OF THE CONDUCTANCE

To compute the length scaling of conductance, the
Landauer-Buttiker formula for two-terminal transport was uti-
lized. The conductance is related to the transmission function
(T ) by (e2/h)T . The transmission function is given by [30]

T = Tr
[

lG

R
1L
rGA

1L

]
, (B1)

where GR(A)
1L is the retarded (advanced) Green’s function cor-

responding to the transmission from the first to the last site of
the chain and 
l (r) is the surface self-energy of the left (right)
lead. The normal metal lead is attached to each end of the
SSH chain of various length (L). The dispersion of the leads
are taken to be E = −2tlcos(ka), where tl = 2, a = 1 and k
is the wave vector.

FIG. 8. Scaling of the conductance with chain length for TAI
phase for (J0, J1, J2 ) = (1,−0.8, −1, 76) and U = 3.5.

According to the theory of localization [31], the scaling
function for the dimensionless conductance, denoted by G, is
given by β(G) = d ln(G)/d ln(L). By chain rule,

β(G) = d ln(G)

dL

dL

d ln(L)
= L

d ln(G)

dL
. (B2)

In the limit of strong disorder, the conductance is assumed
to be proportional to e−L/λ, where L is the system length
and λ is the localization length. Figure 8 shows one exam-
ple of the conductance scaling of TAI regime [point (a) in
Table I]. The orange line in the plot is the fitted linear relation
between ln(G) and L. The scaling shows that conductance
exponentially decays with the system length and confirms the
insulating behavior in TAI phases.
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